1

The diagram shows the curve $y=x^{2}+1$ which passes through the point $A(1,2)$.
a Find an equation of the normal to the curve at the point A.
The normal to the curve at A meets the x-axis at the point B as shown.
b Find the coordinates of B.
The shaded region bounded by the curve, the coordinate axes and the line $A B$ is rotated through 2π radians about the x-axis.
c Show that the volume of the solid formed is $\frac{36}{5} \pi$.
2

The shaded region in the diagram is bounded by the curve with equation $y=4 x+\frac{9}{x}$,
the x-axis and the lines $x=1$ and $x=\mathrm{e}$.
a Find the area of the shaded region, giving your answer in terms of e.
b Find, to 3 significant figures, the volume of the solid formed when the shaded region is rotated completely about the x-axis.

3 The region enclosed by the given curve, the x-axis and the given ordinates is rotated through 2π radians about the x-axis. Find the exact volume of the solid formed in each case.
a $y=\operatorname{cosec} x$,
$x=\frac{\pi}{6}, \quad x=\frac{\pi}{3}$
b $y=\sqrt{\frac{x+3}{x+2}}, \quad x=1$,
$x=4$
c $y=1+\cos 2 x, \quad x=0, \quad x=\frac{\pi}{4}$
d $y=x^{\frac{1}{2}} \mathrm{e}^{2-x}, \quad x=1, \quad x=2$

4

The shaded region in the diagram, bounded by the curve $y=x \mathrm{e}^{-\frac{1}{2} x}$, the x-axis and the line $x=1$, is rotated through 360° about the x-axis.
Show that the volume of the solid formed is $\pi\left(2-5 \mathrm{e}^{-1}\right)$.

C4 Integration

5

The diagram shows part of the curve with equation $y=2 \sin x+\cos x$.
The shaded region is bounded by the curve in the interval $0 \leq x<\frac{\pi}{2}$, the positive coordinate axes and the line $x=\frac{\pi}{2}$.
a Find the area of the shaded region.
b Show that the volume of the solid formed when the shaded region is rotated through 2π radians about the x-axis is $\frac{1}{4} \pi(5 \pi+8)$.

6

The diagram shows part of the curve with parametric equations

$$
x=\tan \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta<\frac{\pi}{2} .
$$

The shaded region is bounded by the curve, the x-axis and the line $x=1$.
a Write down the value of the parameter θ at the points where $x=0$ and where $x=1$.
The shaded region is rotated through 2π radians about the x-axis.
b Show that the volume of the solid formed is given by

$$
4 \pi \int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta \mathrm{~d} \theta
$$

c Evaluate this integral.
7

The diagram shows part of the curve with parametric equations

$$
x=t^{2}-1, \quad y=t(t+1), \quad t \geq 0 .
$$

a Find the value of the parameter t at the points where the curve meets the coordinate axes.
The shaded region bounded by the curve and the coordinate axes is rotated through 2π radians about the x-axis.
b Find the volume of the solid formed, giving your answer in terms of π.

