1 Differentiate with respect to x

$$\mathbf{b} \quad v^3$$

$$\mathbf{c} = \sin 2y$$

d
$$3e^{y^2}$$

Find $\frac{dy}{dx}$ in terms of x and y in each case. 2

$$x^2 + v^2 = 2$$

b
$$2x - y + y^2 = 0$$
 c $y^4 = x^2 - 6x + 2$

$$v^4 = x^2 - 6x + 2$$

d
$$x^2 + v^2 + 3x - 4v = 9$$

d
$$x^2 + y^2 + 3x - 4y = 9$$
 e $x^2 - 2y^2 + x + 3y - 4 = 0$ **f** $\sin x + \cos y = 0$

$$\mathbf{f} = \sin x + \cos y = 0$$

$$\sigma$$
 2e^{3x} + e^{-2y} + 7 = 0

h
$$\tan x + \csc 2y = 1$$

g
$$2e^{3x} + e^{-2y} + 7 = 0$$
 h $\tan x + \csc 2y = 1$ **i** $\ln (x - 2) = \ln (2y + 1)$

Differentiate with respect to x3

b
$$x^2 y^3$$

c
$$\sin x \tan y$$
 d $(x-2y)^3$

d
$$(x-2y)^3$$

Find $\frac{dy}{dx}$ in terms of x and y in each case.

a
$$x^2 y = 2$$

b
$$x^2 + 3xy - y^2 = 0$$

$$4x^2 - 2xy + 3y^2 = 8$$

d
$$\cos 2x \sec 3y + 1 = 0$$

$$\mathbf{e} \quad y = (x+y)^2$$

$$\mathbf{f} \quad x \mathbf{e}^y - y = 5$$

$$\mathbf{g} \quad 2xy^2 - x^3y = 0$$

h
$$y^2 + x \ln y = 3$$

a
$$x^2y = 2$$

b $x^2 + 3xy - y^2 = 0$
c $4x^2 - 2xy + 3y^2 = 8$
d $\cos 2x \sec 3y + 1 = 0$
e $y = (x + y)^2$
f $xe^y - y = 5$
g $2xy^2 - x^3y = 0$
h $y^2 + x \ln y = 3$
i $x \sin y + x^2 \cos y = 1$

Find an equation for the tangent to each curve at the given point on the curve. 5

a
$$x^2 + y^2 - 3y - 2 = 0$$

b
$$2x^2 - xy + y^2 = 28$$

a
$$x^2 + y^2 - 3y - 2 = 0$$
, (2, 1) **b** $2x^2 - xy + y^2 = 28$, (3, 5)
c $4 \sin y - \sec x = 0$, $(\frac{\pi}{3}, \frac{\pi}{6})$ **d** $2 \tan x \cos y = 1$, $(\frac{\pi}{4}, \frac{\pi}{3})$

$$(\frac{\pi}{3},\frac{\pi}{6})$$

d
$$2 \tan x \cos y = 1$$
,

$$(\frac{\pi}{4},\frac{\pi}{3})$$

A curve has the equation $x^2 + 2y^2 - x + 4y = 6$.

a Show that
$$\frac{dy}{dx} = \frac{1-2x}{4(y+1)}$$
.

b Find an equation for the normal to the curve at the point (1, -3).

A curve has the equation $x^2 + 4xy - 3y^2 = 36$.

a Find an equation for the tangent to the curve at the point P(4, 2).

Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P,

b find the coordinates of Q.

A curve has the equation $y = a^x$, where a is a positive constant. 8

By first taking logarithms, find an expression for $\frac{dy}{dx}$ in terms of a and x.

Differentiate with respect to x 9

a
$$3^x$$

c
$$5^{1-x}$$

$$d = 2^{x^3}$$

A biological culture is growing exponentially such that the number of bacteria present, N, at time 10 t minutes is given by

$$N = 800(1.04)^{t}$$
.

Find the rate at which the number of bacteria is increasing when there are 4000 bacteria present.