C4

1 Differentiate with respect to x
a $4 y$
b y^{3}
c $\sin 2 y$
d $3 \mathrm{e}^{y^{2}}$

2 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y in each case.
a $x^{2}+y^{2}=2$
b $2 x-y+y^{2}=0$
c $y^{4}=x^{2}-6 x+2$
d $x^{2}+y^{2}+3 x-4 y=9$
e $x^{2}-2 y^{2}+x+3 y-4=0$
f $\sin x+\cos y=0$
g $2 \mathrm{e}^{3 x}+\mathrm{e}^{-2 y}+7=0$
h $\tan x+\operatorname{cosec} 2 y=1$
i $\ln (x-2)=\ln (2 y+1)$

3 Differentiate with respect to x
a $x y$
b $x^{2} y^{3}$
c $\sin x \tan y$
d $(x-2 y)^{3}$

4 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y in each case.
a $x^{2} y=2$
b $x^{2}+3 x y-y^{2}=0$
c $4 x^{2}-2 x y+3 y^{2}=8$
d $\cos 2 x \sec 3 y+1=0$
e $y=(x+y)^{2}$
f $x \mathrm{e}^{y}-y=5$
g $2 x y^{2}-x^{3} y=0$
h $y^{2}+x \ln y=3$
i $x \sin y+x^{2} \cos y=1$

5 Find an equation for the tangent to each curve at the given point on the curve.
a $x^{2}+y^{2}-3 y-2=0$,
b $2 x^{2}-x y+y^{2}=28$,
c $4 \sin y-\sec x=0$,
$\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$
d $2 \tan x \cos y=1$,
($\frac{\pi}{4}, \frac{\pi}{3}$)

6 A curve has the equation $x^{2}+2 y^{2}-x+4 y=6$.
a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-2 x}{4(y+1)}$.
b Find an equation for the normal to the curve at the point $(1,-3)$.
7 A curve has the equation $x^{2}+4 x y-3 y^{2}=36$.
a Find an equation for the tangent to the curve at the point $P(4,2)$.
Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P,
b find the coordinates of Q.
8 A curve has the equation $y=a^{x}$, where a is a positive constant.
By first taking logarithms, find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of a and x.
9 Differentiate with respect to x
a 3^{x}
b $6^{2 x}$
c 5^{1-x}
d $2^{x^{3}}$

10 A biological culture is growing exponentially such that the number of bacteria present, N, at time t minutes is given by

$$
N=800(1.04)^{t} .
$$

Find the rate at which the number of bacteria is increasing when there are 4000 bacteria present.

