C4

1 A curve is given by the parametric equations

$$
x=2+t, \quad y=t^{2}-1
$$

a Write down expressions for $\frac{\mathrm{d} x}{\mathrm{~d} t}$ and $\frac{\mathrm{d} y}{\mathrm{~d} t}$.
b Hence, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t$.
2 Find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of the parameter t in each case.
a $x=t^{2}, \quad y=3 t$
b $x=t^{2}-1, y=2 t^{3}+t^{2}$
c $x=2 \sin t, y=6 \cos t$
d $x=3 t-1, y=2-\frac{1}{t}$
e $x=\cos 2 t, y=\sin t$
f $x=\mathrm{e}^{t+1}, y=\mathrm{e}^{2 t-1}$
g $x=\sin ^{2} t, \quad y=\cos ^{3} t$
h $x=3 \sec t, y=5 \tan t$
i $x=\frac{1}{t+1}, y=\frac{t}{t-1}$

3 Find, in the form $y=m x+c$, an equation for the tangent to the given curve at the point with the given value of the parameter t.
a $x=t^{3}, y=3 t^{2}$,
$t=1$
b $x=1-t^{2}, \quad y=2 t-t^{2}, \quad t=2$
c $x=2 \sin t, y=1-4 \cos t, \quad t=\frac{\pi}{3}$
d $x=\ln (4-t), \quad y=t^{2}-5, \quad t=3$

4 Show that the normal to the curve with parametric equations

$$
x=\sec \theta, \quad y=2 \tan \theta, \quad 0 \leq \theta<\frac{\pi}{2},
$$

at the point where $\theta=\frac{\pi}{3}$, has the equation

$$
\sqrt{3} x+4 y=10 \sqrt{3} .
$$

5 A curve is given by the parametric equations

$$
x=\frac{1}{t}, \quad y=\frac{1}{t+2} .
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\left(\frac{t}{t+2}\right)^{2}$.
b Find an equation for the normal to the curve at the point where $t=2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

6 A curve has parametric equations

$$
x=\sin 2 t, \quad y=\sin ^{2} t, \quad 0 \leq t<\pi .
$$

a Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \tan 2 t$.
b Find an equation for the tangent to the curve at the point where $t=\frac{\pi}{6}$.
7 A curve has parametric equations

$$
x=3 \cos \theta, \quad y=4 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

a Show that the tangent to the curve at the point $(3 \cos \alpha, 4 \sin \alpha)$ has the equation

$$
3 y \sin \alpha+4 x \cos \alpha=12 .
$$

b Hence find an equation for the tangent to the curve at the point $\left(-\frac{3}{2}, 2 \sqrt{3}\right)$.

8 A curve is given by the parametric equations

$$
x=t^{2}, \quad y=t(t-2), \quad t \geq 0 .
$$

a Find the coordinates of any points where the curve meets the coordinate axes.
b Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x
i by first finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t,
ii by first finding a cartesian equation for the curve.

9

The diagram shows the ellipse with parametric equations

$$
x=1-2 \cos \theta, \quad y=3 \sin \theta, \quad 0 \leq \theta<2 \pi .
$$

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.
b Find the coordinates of the points where the tangent to the curve is
i parallel to the x-axis,
ii parallel to the y-axis.
10 A curve is given by the parametric equations

$$
x=\sin \theta, \quad y=\sin 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

a Find the coordinates of any points where the curve meets the coordinate axes.
b Find an equation for the tangent to the curve that is parallel to the x-axis.
c Find a cartesian equation for the curve in the form $y=\mathrm{f}(x)$.
11 A curve has parametric equations

$$
x=\sin ^{2} t, y=\tan t,-\frac{\pi}{2}<t<\frac{\pi}{2} .
$$

a Show that the tangent to the curve at the point where $t=\frac{\pi}{4}$ passes through the origin.
b Find a cartesian equation for the curve in the form $y^{2}=\mathrm{f}(x)$.
12 A curve is given by the parametric equations

$$
x=t+\frac{1}{t}, \quad y=t-\frac{1}{t}, \quad t \neq 0
$$

a Find an equation for the tangent to the curve at the point P where $t=3$.
b Show that the tangent to the curve at P does not meet the curve again.
c Show that the cartesian equation of the curve can be written in the form

$$
x^{2}-y^{2}=k
$$

where k is a constant to be found.

