C3 Numerical Methods

1 For each equation, show that it can be rearranged into the given iterative form. Use this and the given value of x_{0} to find x_{1}, x_{2} and x_{3}. Give your value of x_{3} correct to 4 decimal places.
a $9+4 x-2 x^{3}=0$
$x_{n+1}=\sqrt[3]{2 x_{n}+4.5}$
$x_{n+1}=\ln \left(8 x_{n}-5\right)$
$x_{n+1}=\arctan \left(5 x_{n}-13\right)$
$x_{n}=-\left(\sqrt{x_{n}}+1.4\right)$
$x_{0}=2$
b $\mathrm{e}^{x}-8 x+5=0$
$x_{0}=3$
c $\tan x-5 x+13=0$
$x_{n+1}=\mathrm{e}^{-\left(\sqrt{x_{n}}+1.4\right)}$
$x_{0}=-1.2$
d $\ln x+\sqrt{x}+1.4=0$
$x_{0}=0.16$
$x_{n+1}-\frac{1}{2}$
2 For each equation, show that it can be rearranged into the given iterative form and state the values of the constants a and b. Use this and the given value of x_{0} to find x_{1}, x_{2} and x_{3}.
Give your value of x_{3} correct to 3 decimal places.
a $\mathrm{e}^{2 x-1}-6 x=0 \quad x_{n+1}=a\left(\ln b x_{n}+1\right) \quad x_{0}=1.7$
b $\frac{2}{x}+\cos x-3=0 \quad x_{n+1}=\frac{a}{b-\cos x_{n}} \quad x_{0}=0.8$
c $2 x^{3}-6 x-11=0 \quad x_{n+1}=\sqrt{a+\frac{b}{x_{n}}} \quad x_{0}=2$
d $15 \ln (x+3)-4 x=0$
$x_{n+1}=\mathrm{e}^{a x_{n}}+b$
$x_{0}=-2.5$
3 In each case, use the given iteration formula and value of x_{0} to find a root of the equation $\mathrm{f}(x)=0$ to the stated degree of accuracy. Justify the accuracy of your answers.
a $\mathrm{f}(x)=10^{x}+3 x-4$
$x_{n+1}=\log _{10}\left(4-3 x_{n}\right)$
$x_{0}=0.44$
3 decimal places
b $\mathrm{f}(x)=x^{2}+\frac{1}{x-5}$
$x_{n+1}=\sqrt{\frac{x_{n}^{3}+1}{5}} \quad x_{0}=0.5$
2 significant figures
c $\mathrm{f}(x)=30-5 x+\sin 2 x$
$x_{n+1}=6+0.2 \sin 2 x_{n}$
$x_{0}=6$
3 significant figures
d $\mathrm{f}(x)=\mathrm{e}^{4-x}-\ln x$
$x_{n+1}=4-\ln \left(\ln x_{n}\right)$
$x_{0}=3.7$
3 decimal places

4

5

$$
\mathrm{f}(x)=x^{5}-10 x^{3}+4
$$

The equation $\mathrm{f}(x)=0$ has a root in the interval $-4<x<-3$.
a Use the iteration formula $x_{n+1}=\sqrt[5]{10 x_{n}^{3}-4}$ and the starting value $x_{0}=-3.2$ to find the value of this root correct to 2 decimal places.
The equation $\mathrm{f}(x)=0$ can be rearranged into the iterative form $x_{n+1}=\sqrt[3]{\frac{a}{b-x_{n}{ }^{2}}}$.
b Find the values of the constants a and b in this formula.
The equation $\mathrm{f}(x)=0$ has another root in the interval $0<x<1$.
c Using the iteration formula with your values from part \mathbf{b} and the starting value $x_{0}=1$, find the value of this root correct to 3 decimal places.
$\mathrm{f}: x \rightarrow \arcsin 2 x-0.5 x-0.7, x \in \mathbb{R},|x| \leq 0.5$
The equation $\mathrm{f}(x)=0$ can be rearranged into the iterative form $x_{n+1}=a \sin \left(b x_{n}+c\right)$.
a Find the values of the constants a, b and c in this formula.
The equation $\mathrm{f}(x)=0$ has a solution in the interval $(0.3,0.4)$.
b Using the iterative formula with your values from part a and the starting value $x_{0}=0.4$, find this solution correct to 3 decimal places.

