1 For each equation, show that it can be rearranged into the given iterative form. Use this and the given value of x_0 to find x_1 , x_2 and x_3 . Give your value of x_3 correct to 4 decimal places.

$$\mathbf{a} \quad 9 + 4x - 2x^3 = 0$$

a
$$9 + 4x - 2x^3 = 0$$
 $x_{n+1} = \sqrt[3]{2x_n + 4.5}$

$$x_0 = 2$$

b
$$e^x - 8x + 5 = 0$$

b
$$e^x - 8x + 5 = 0$$
 $x_{n+1} = \ln(8x_n - 5)$ $x_0 = 3$

$$x_0 = 3$$

$$c \tan x - 5x + 13 = 0$$

c
$$\tan x - 5x + 13 = 0$$
 $x_{n+1} = \arctan(5x_n - 13)$ $x_0 = -1.2$

$$x_0 = -1.2$$

d
$$\ln x + \sqrt{x} + 1.4 = 0$$
 $x_{n+1} = e^{-(\sqrt{x_n} + 1.4)}$ $x_0 = 0.16$

$$x_{n+1} = e^{-(\sqrt{x_n} + 1.4)}$$

$$x_0 = 0.16$$

For each equation, show that it can be rearranged into the given iterative form and state the 2 values of the constants a and b. Use this and the given value of x_0 to find x_1 , x_2 and x_3 . Give your value of x_3 correct to 3 decimal places.

$$\mathbf{a} \quad e^{2x-1} - 6x = 0$$

$$x_{n+1} = a(\ln bx_n + 1)$$
 $x_0 = 1.7$

$$x_0 = 1.7$$

b
$$\frac{2}{x} + \cos x - 3 = 0$$
 $x_{n+1} = \frac{a}{b - \cos x_n}$ $x_0 = 0.8$
c $2x^3 - 6x - 11 = 0$ $x_{n+1} = \sqrt{a + \frac{b}{x_n}}$ $x_0 = 2$

$$x_{n+1} = \frac{a}{b - \cos x_n}$$

$$x_0 = 0.8$$

$$c 2x^3 - 6x - 11 = 0$$

$$x_{n+1} = \sqrt{a + \frac{b}{x_n}}$$

$$x_0 = 2$$

d
$$15 \ln (x+3) - 4x = 0$$
 $x_{n+1} = e^{ax_n} + b$ $x_0 = -2.5$

$$x_{n+1} = e^{ax_n} + I$$

$$x_0 = -2.5$$

3 In each case, use the given iteration formula and value of x_0 to find a root of the equation f(x) = 0to the stated degree of accuracy. Justify the accuracy of your answers.

a
$$f(x) = 10^x + 3x - 4$$

a
$$f(x) = 10^x + 3x - 4$$
 $x_{n+1} = \log_{10} (4 - 3x_n)$ $x_0 = 0.44$ 3 decimal places

$$x_0 = 0.44$$

b
$$f(x) = x^2 + \frac{1}{x-5}$$
 $x_{n+1} = \sqrt{\frac{x_n^3 + 1}{5}}$ $x_0 = 0.5$ 2 significant figures

$$x_{n+1} = \sqrt{\frac{x_n^3 + 1}{5}}$$

$$x_0 = 0.5$$

c
$$f(x) = 30 - 5x + \sin 2x$$
 $x_{n+1} = 6 + 0.2 \sin 2x_n$ $x_0 = 6$

$$x_{n+1} = 6 \pm 0.2 \sin 2x_n$$

3 significant figures

d
$$f(x) = e^{4-x} - \ln x$$

5

d
$$f(x) = e^{4-x} - \ln x$$
 $x_{n+1} = 4 - \ln (\ln x_n)$ $x_0 = 3.7$ 3 decimal places

$$v = 3.7$$

4
$$f(x) = x^5 - 10x^3 + 4$$
.

The equation f(x) = 0 has a root in the interval -4 < x < -3.

a Use the iteration formula $x_{n+1} = \sqrt[5]{10x_n^3 - 4}$ and the starting value $x_0 = -3.2$ to find the value of this root correct to 2 decimal places.

The equation f(x) = 0 can be rearranged into the iterative form $x_{n+1} = \sqrt[3]{\frac{a}{b-x^2}}$.

b Find the values of the constants a and b in this formula.

The equation f(x) = 0 has another root in the interval 0 < x < 1.

c Using the iteration formula with your values from part **b** and the starting value $x_0 = 1$, find the value of this root correct to 3 decimal places.

$$f: x \to \arcsin 2x - 0.5x - 0.7, \ x \in \mathbb{R}, \ |x| \le 0.5$$

The equation f(x) = 0 can be rearranged into the iterative form $x_{n+1} = a \sin(bx_n + c)$.

a Find the values of the constants a, b and c in this formula.

The equation f(x) = 0 has a solution in the interval (0.3, 0.4).

b Using the iterative formula with your values from part **a** and the starting value $x_0 = 0.4$, find this solution correct to 3 decimal places.