C3 Numerical Methods

1 Show in each case that there is a root of the equation $\mathrm{f}(x)=0$ in the given interval.
a $\mathrm{f}(x)=x^{3}+3 x-7$
$(1,2)$
b $\mathrm{f}(x)=5 \cos x-3 x$
c $\mathrm{f}(x)=2 \mathrm{e}^{x}+x+5$
$(-6,-5)$
d $\mathrm{f}(x)=x^{4}-5 x^{2}+1$
e $\mathrm{f}(x)=\ln (4 x-1)+x^{2}$
$(0.4,0.5)$
f $\mathrm{f}(x)=\mathrm{e}^{-x}-9 \cos 4 x$

2 Given that $|N| \leq 5$, find in each case the integer N such that there is a root of the equation $\mathrm{f}(x)=0$ in the interval $(N, N+1)$.
a $\mathrm{f}(x)=x^{3}-3 \sqrt{x}-4$
b $\mathrm{f}(x)=x \ln x-\frac{12}{x}$
c $\mathrm{f}(x)=2 x^{5}+4 x+15$
d $\mathrm{f}(x)=\mathrm{e}^{x-1}+4 x-2$
e $\mathrm{f}(x)=\mathrm{e}^{x}-3 \sin x$
f $\mathrm{f}(x)=\tan (0.1 x)+x-6$

3 Show in each case that there is a root of the given equation in the given interval.
a $x^{3}=12-\frac{x}{4}$
$[2,3]$
b $12 \mathrm{e}^{x}=9-4 x$
$[-1,0]$
c $10 \ln 3 x=5-7 x^{2}$
[0.47, 0.48]
d $\sin 4 x=7 \mathrm{e}^{x}$
$[-6.5,-6]$
e $4^{x}=3 x+10$
$[-4,-3]$
f $\tan \left(\frac{1}{2} x\right)=2 x-1$

4 In each case there is a root of the equation $\mathrm{f}(x)=0$ in the given interval.
Find the integer, a, such that this root lies in the interval $\left(\frac{a}{10}, \frac{a+1}{10}\right)$.
a $\mathrm{f}(x)=x^{4}+\frac{3}{x}-5$
b $\mathrm{f}(x)=x-\ln \left(6+x^{2}\right)$
c $\mathrm{f}(x)=5 x^{3}-3 x^{2}+11$
$(-2,-1)$
d $\mathrm{f}(x)=\frac{8}{x}-\cos x$
e $\mathrm{f}(x)=\operatorname{cosec} x+\sqrt{x}$
f $\mathrm{f}(x)=x^{2}-7 \mathrm{e}^{2 x+5}$

5 a On the same set of axes, sketch the graphs of $y=x^{3}$ and $y=4-x$.
b Hence, show that the equation $x^{3}+x-4=0$ has exactly one real root.
c Show that this root lies in the interval $(1,1.5)$.

$$
\mathrm{f}: x \rightarrow x \ln x-1, x \in \mathbb{R}, x>0
$$

a On the same set of axes, sketch the curves $y=\ln x$ and $y=\frac{1}{x}$.
b Hence show that the equation $\mathrm{f}(x)=0$ has exactly one real root.
The real root of $\mathrm{f}(x)=0$ is α.
c Find the integer n such that $n<\alpha<n+1$.
7 a On the same set of axes, sketch the curves $y=\mathrm{e}^{x}$ and $y=5-x^{2}$.
b Hence show that the equation $\mathrm{e}^{x}+x^{2}-5=0$ has exactly one negative and one positive real root.
c Show that the negative root lies in the interval $(-3,-2)$.
The positive root, α, is such that $\frac{n}{10}<\alpha<\frac{n+1}{10}$, where n is an integer.
d Find the value of n.

