1 Describe how the graph of $y=\mathrm{f}(x)$ is transformed to give the graph of
a $y=2+\mathrm{f}(x+3)$
b $y=2 \mathrm{f}(-x)$
c $y=3 \mathrm{f}(x-1)$
d $y=4-\mathrm{f}(x)$

2 a Express $x^{2}+6 x+2$ in the form $a(x+b)^{2}+c$.
b Hence, describe two transformations that would map the graph of $y=x^{2}$ onto the graph of $y=x^{2}+6 x+2$.

3 Each of the following graphs is translated by 3 units in the positive x-direction and then stretched by a factor of 2 in the y-direction, about the x-axis.
Find and simplify an equation of the graph obtained in each case.
a $y=2 x+7$
b $y=3 \mathrm{e}^{x}$
c $y=x^{2}-3 x+1$
d $y=\frac{1}{x}$

4 Describe in order two transformations that would map the graph of
a $y=|x|$ onto the graph of $y=-|3 x| \quad$ b $y=\mathrm{e}^{x}$ onto the graph of $y=5+\mathrm{e}^{-x}$
c $y=\frac{1}{x}$ onto the graph of $y=\frac{3}{x+4}$
d $y=\ln x$ onto the graph of $y=2+3 \ln x$
5

The diagram shows the curve with equation $y=\mathrm{f}(x)$ which is stationary at the point $(2,6)$.
Showing the coordinates of the stationary point in each case, sketch on separate diagrams the graphs of
a $y=1+\mathrm{f}(x-4)$
b $y=3-\mathrm{f}(x)$
c $y=2 \mathrm{f}(x+1)$
d $y=\frac{1}{2} \mathrm{f}(2 x)$

6 The graph of $y=x^{2}+4 x-2$ undergoes the following three transformations:
first: translation by -2 units in the positive x-direction, second: stretch by a factor of 3 in the y-direction, about the x-axis, third: reflection in the y-axis.
Find and simplify an equation of the graph obtained.
7 a Express $2 x^{2}-4 x+7$ in the form $a(x+b)^{2}+c$.
b Hence, describe in order a sequence of transformations that would map the graph of $y=2 x^{2}-4 x+7$ onto the graph of $y=x^{2}$.

8

$$
\mathrm{f}(x) \equiv x^{3}-3 x^{2}+4, x \in \mathbb{R}
$$

a Find the coordinates of the stationary points on the graph of $y=\mathrm{f}(x)$.
b Hence, find the coordinates of the stationary points on each of the following graphs.
i $y=-2 \mathrm{f}(x)$
ii $y=3+\mathrm{f}\left(\frac{1}{2} x\right)$
iii $y=\frac{1}{4} \mathrm{f}(x-2)$

9 a Describe clearly, in order, the sequence of transformations that would map the graph of $y=\sqrt{x}$ onto the graph of $y=2-3 \sqrt{x}$.
b Sketch the graph of $y=2-3 \sqrt{x}$ showing the coordinates of any points where the graph meets the coordinate axes.

10

The diagram shows part of the curve with equation $y=2-\cos 2 x^{\circ}, x>0$.
a State the period of the curve.
b Write down the coordinates of the point A where the curve meets the y-axis.
c Write down the coordinates of B and C, the first two maximum points on the curve.
11 Sketch each of the following curves for x in the interval $0 \leq x \leq 360$. Show the coordinates of any turning points and the equations of any asymptotes.
a $y=3 \cos 2 x^{\circ}$
b $y=\tan \left(-2 x^{\circ}\right)$
c $y=1+2 \sin x^{\circ}$
d $y=-\sin (x+60)^{\circ}$
e $y=2 \cos (x-45)^{\circ}$
f $y=3-\tan x^{\circ}$
g $y=2+\cos \frac{1}{2} x^{\circ}$
h $y=4 \sin \frac{3}{2} x^{\circ}$
i $y=1-2 \cos x^{\circ}$

12 State the period of the curves with the equations
a $y=2 \tan 3 x^{\circ}$,
b $y=1+\sin k x^{\circ}$, giving your answer in terms of k.

13

$$
\mathrm{f}(x) \equiv 2 \sin \frac{1}{2} x, \quad 0 \leq x \leq 2 \pi .
$$

a Sketch the graph $y=\mathrm{f}(x)$.
b State the coordinates of the maximum point of the curve.
c Solve the equation $\mathrm{f}(x)=\sqrt{2}$, giving your answers in terms of π.

The graph shows the curve $y=a \sin b x^{\circ}, 0 \leq x \leq 180$.
The curve has a maximum at the point A with coordinates (45, 4).
a Find the values of the constants a and b.
b Write down the coordinates of the minimum point of the curve, B.

