C3 Differentiation

1 Differentiate with respect to x
a $\cos x$
b $5 \sin x$
c $\cos 3 x$
d $\sin \frac{1}{4} x$
e $\sin (x+1)$
f $\cos (3 x-2)$
g $4 \sin \left(\frac{\pi}{3}-x\right)$
h $\cos \left(\frac{1}{2} x+\frac{\pi}{6}\right)$
i $\sin ^{2} x$
j $2 \cos ^{3} x$
k $\cos ^{2}(x-1)$
l $\sin ^{4} 2 x$

2 Use the derivatives of $\sin x$ and $\cos x$ to show that
a $\frac{\mathrm{d}}{\mathrm{d} x}(\tan x)=\sec ^{2} x$
b $\frac{\mathrm{d}}{\mathrm{d} x}(\sec x)=\sec x \tan x$
c $\frac{\mathrm{d}}{\mathrm{d} x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
d $\frac{\mathrm{d}}{\mathrm{d} x}(\cot x)=-\operatorname{cosec}^{2} x$

3 Differentiate with respect to t
a $\cot 2 t$
b $\sec (t+2)$
c $\tan (4 t-3)$
d $\operatorname{cosec} 3 t$
e $\tan ^{2} t$
f $3 \operatorname{cosec}\left(t+\frac{\pi}{6}\right)$
g $\cot ^{3} t$
h $4 \sec \frac{1}{2} t$
i $\cot (2 t-3)$
j $\sec ^{2} 2 t$
k $\frac{1}{2} \tan (\pi-4 t)$
l $\operatorname{cosec}^{2}(3 t+1)$

4 Differentiate with respect to x
a $\ln (\sin x)$
b $6 \mathrm{e}^{\tan x}$
c $\sqrt{\cos 2 x}$
d $\mathrm{e}^{\sin 3 x}$
e $2 \cot x^{2}$
f $\sqrt{\sec x}$
g $3 \mathrm{e}^{-\operatorname{cosec} 2 x}$
h $\ln (\tan 4 x)$

5 Find the coordinates of any stationary points on each curve in the interval $0 \leq x \leq 2 \pi$.
a $y=x+2 \sin x$
b $y=2 \sec x-\tan x$
c $y=\sin x+\cos 2 x$

6 Find an equation for the tangent to each curve at the point on the curve with the given x-coordinate.
a $y=1+\sin 2 x$,
$x=0$
b $y=\cos x$,
$x=\frac{\pi}{3}$
c $y=\tan 3 x$,
$x=\frac{\pi}{4}$
d $y=\operatorname{cosec} x-2 \sin x$,
$x=\frac{\pi}{6}$

7 Differentiate with respect to x
a $x \sin x$
b $\frac{\cos 2 x}{x}$
c $\mathrm{e}^{x} \cos x$
d $\sin x \cos x$
e $x^{2} \operatorname{cosec} x$
f $\sec x \tan x$
g $\frac{x}{\tan x}$
h $\frac{\sin 2 x}{\mathrm{e}^{3 x}}$
i $\cos ^{2} x \cot x$
j $\frac{\sec 2 x}{x^{2}}$
k $x \tan ^{2} 4 x$
l $\frac{\sin x}{\cos 2 x}$

8 Find the value of $\mathrm{f}^{\prime}(x)$ at the value of x indicated in each case.
a $\mathrm{f}(x)=\sin 3 x \cos 5 x, \quad x=\frac{\pi}{4}$
b $\mathrm{f}(x)=\tan 2 x \sin x$,
$x=\frac{\pi}{3}$
c $\mathrm{f}(x)=\frac{\ln (2 \cos x)}{\sin x}$,
$x=\frac{\pi}{3}$
d $\mathrm{f}(x)=\sin ^{2} x \cos ^{3} x$,
$x=\frac{\pi}{6}$

9 Find an equation for the normal to the curve $y=3+x \cos 2 x$ at the point where it crosses the y-axis.

10 A curve has the equation $y=\frac{2+\sin x}{1-\sin x}, 0 \leq x \leq 2 \pi, x \neq \frac{\pi}{2}$.
a Find and simplify an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Find the coordinates of the turning point of the curve.
c Show that the tangent to the curve at the point P, with x-coordinate $\frac{\pi}{6}$, has equation

$$
y=6 \sqrt{3} x+5-\sqrt{3} \pi .
$$

11 A curve has the equation $y=\mathrm{e}^{-x} \sin x$.
a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
b Find the exact coordinates of the stationary points of the curve in the interval $-\pi \leq x \leq \pi$ and determine their nature.

12 The curve C has the equation $y=x \sec x$.
a Show that the x-coordinate of any stationary point of C must satisfy the equation

$$
1+x \tan x=0 .
$$

b By sketching two suitable graphs on the same set of axes, deduce the number of stationary points C has in the interval $0 \leq x \leq 2 \pi$.

13

The diagram shows the curve $y=\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$, where

$$
\mathrm{f}(x) \equiv \cos x \sin 2 x .
$$

a Show that $\mathrm{f}^{\prime}(x)=2 \cos x\left(1-3 \sin ^{2} x\right)$.
b Find the x-coordinates of the stationary points of the curve in the interval $0 \leq x \leq 2 \pi$.
c Show that the maximum value of $\mathrm{f}(x)$ in the interval $0 \leq x \leq 2 \pi$ is $\frac{4}{9} \sqrt{3}$.
d Explain why this is the maximum value of $\mathrm{f}(x)$ for all real values of x.
14 A curve has the equation $y=\operatorname{cosec}\left(x-\frac{\pi}{6}\right)$ and crosses the y-axis at the point P.
a Find an equation for the normal to the curve at P.
The point Q on the curve has x-coordinate $\frac{\pi}{3}$.
b Find an equation for the tangent to the curve at Q.
The normal to the curve at P and the tangent to the curve at Q intersect at the point R.
c Show that the x-coordinate of R is given by $\frac{8 \sqrt{3}+4 \pi}{13}$.

