C3

1 A curve has the equation $y=x^{2}(2-x)^{3}$ and passes through the point $A(1,1)$.
a Find an equation for the tangent to the curve at A.
b Show that the normal to the curve at A passes through the origin.

2 A curve has the equation $y=\frac{x}{2 x+3}$.
a Find an equation for the tangent to the curve at the point $P(-1,-1)$.
b Find an equation for the normal to the curve at the origin, O.
c Find the coordinates of the point where the tangent to the curve at P meets the normal to the curve at O.

3

The diagram shows the curve with equation $y=(x+3)(x-1)^{3}$ which crosses the x-axis at the points P and Q and has a minimum at the point R.
a Write down the coordinates of P and Q.
b Find the coordinates of R.
4 Given that $y=x \sqrt{4 x+1}$,
a show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+1}{\sqrt{4 x+1}}$,
b solve the equation $\frac{\mathrm{d} y}{\mathrm{~d} x}-5 y=0$.
5 A curve has the equation $y=\frac{2(x-1)}{x^{2}+3}$ and crosses the x-axis at the point A.
a Show that the normal to the curve at A has the equation $y=2-2 x$.
b Find the coordinates of any stationary points on the curve.

$$
\mathrm{f}(x) \equiv x^{\frac{3}{2}}(x-3)^{3}, x>0
$$

a Show that

$$
\mathrm{f}^{\prime}(x)=k x^{\frac{1}{2}}(x-1)(x-3)^{2}
$$

where k is a constant to be found.
b Hence, find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$.

$$
\mathrm{f}(x)=x \sqrt{2 x+12}, x \geq-6
$$

a Find $\mathrm{f}^{\prime}(x)$ and show that $\mathrm{f}^{\prime \prime}(x)=\frac{3(x+8)}{(2 x+12)^{\frac{3}{2}}}$.
b Find the coordinates of the turning point of the curve $y=\mathrm{f}(x)$ and determine its nature.

