C3 Differentiation

1 Given that $\mathrm{f}(x)=\frac{x}{x+2}$, find $\mathrm{f}^{\prime}(x)$
a using the product rule,
b using the quotient rule.

2 Differentiate each of the following with respect to x and simplify your answers.
a $\frac{4 x}{1-3 x}$
b $\frac{\mathrm{e}^{x}}{x-4}$
c $\frac{x+1}{2 x+3}$
d $\frac{\ln x}{2 x}$
e $\frac{x}{2-x^{2}}$
f $\frac{\sqrt{x}}{3 x+2}$
g $\frac{\mathrm{e}^{2 x}}{1-\mathrm{e}^{2 x}}$
h $\frac{2 x+1}{\sqrt{x-3}}$

3 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying your answer in each case.
a $y=\frac{x^{2}}{x+4}$
b $y=\frac{\sqrt{x-4}}{2 x^{2}}$
c $y=\frac{2 \mathrm{e}^{x}+1}{1-3 \mathrm{e}^{x}}$
d $y=\frac{1-x}{x^{3}+2}$
e $y=\frac{\ln (3 x-1)}{x+2}$
f $y=\sqrt{\frac{x+1}{x+3}}$

4 Find the coordinates of any stationary points on each curve.
a $y=\frac{x^{2}}{3-x}$
b $y=\frac{\mathrm{e}^{4 x}}{2 x-1}$
c $y=\frac{x+5}{\sqrt{2 x+1}}$
d $y=\frac{\ln 3 x}{2 x}$
e $y=\left(\frac{x+1}{x-2}\right)^{2}$
f $y=\frac{x^{2}-3}{x+2}$

5 Find an equation for the tangent to each curve at the point on the curve with the given x-coordinate.
a $y=\frac{2 x}{3-x}$,
$x=2$
b $y=\frac{\mathrm{e}^{x}+3}{\mathrm{e}^{x}+1}$,
$x=0$
c $y=\frac{\sqrt{x}}{5-x}$,
$x=4$
d $y=\frac{3 x+4}{x^{2}+1}, \quad x=-1$

6 Find an equation for the normal to each curve at the point on the curve with the given x-coordinate.
Give your answers in the form $a x+b y+c=0$, where a, b and c are integers.
a $y=\frac{1-x}{3 x+1}$,
$x=1$
b $y=\frac{4 x}{\sqrt{2-x}}, \quad x=-2$
c $y=\frac{\ln (2 x-5)}{3 x-5}, \quad x=3$
d $y=\frac{x}{x^{3}-4}, \quad x=2$

7

The diagram shows part of the curve $y=\frac{2 \sqrt{x}-3}{x-2}$ which is stationary at the points A and B.
a Show that the x-coordinates of A and B satisfy the equation $x-3 \sqrt{x}+2=0$.
b Hence, find the coordinates of A and B.

