DIFFERENTIATION

C3

1	Civer that $f(x) = \frac{x}{x}$ find $f'(x)$			
1	Given that $f(x) = \frac{1}{x+2}$, find f (x)			
	a using the product	rule,	b using the quotier	it rule.
2	Differentiate each of the following with respect to x and simplify your answers.			
	a $\frac{4x}{1-3x}$	b $\frac{e^x}{x-4}$	$\mathbf{c} \frac{x+1}{2x+3}$	d $\frac{\ln x}{2x}$
	$\mathbf{e} \frac{x}{2-x^2}$	$\mathbf{f} \frac{\sqrt{x}}{3x+2}$	$\mathbf{g} \frac{\mathrm{e}^{2x}}{1-\mathrm{e}^{2x}}$	$\mathbf{h} \frac{2x+1}{\sqrt{x-3}}$
3	Find $\frac{dy}{dx}$, simplifying your answer in each case.			
	$\mathbf{a} y = \frac{x^2}{x+4}$	$\mathbf{b} y = \frac{\sqrt{x-4}}{2x^2}$	c y	$y = \frac{2e^x + 1}{1 - 3e^x}$
	$\mathbf{d} y = \frac{1-x}{x^3+2}$	$\mathbf{e} y = \frac{\ln(3x - x)}{x + 2}$	<u>1)</u> f y	$y = \sqrt{\frac{x+1}{x+3}}$
4	Find the coordinates of any stationary points on each curve.			
	$\mathbf{a} y = \frac{x^2}{3-x}$	$\mathbf{b} y = \frac{\mathrm{e}^{4x}}{2x - 1}$	c ,	$y = \frac{x+5}{\sqrt{2x+1}}$
	$\mathbf{d} y = \frac{\ln 3x}{2x}$	$\mathbf{e} y = \left(\frac{x+1}{x-2}\right)$	2 f y	$y = \frac{x^2 - 3}{x + 2}$
5	Find an equation for the tangent to each curve at the point on the curve with the given x-coordinate			
	a $y = \frac{2x}{3-x}$,	<i>x</i> = 2	$\mathbf{b} y = \frac{\mathbf{e}^x + 3}{\mathbf{e}^x + 1},$	x = 0
	$\mathbf{c} y = \frac{\sqrt{x}}{5-x} ,$	x = 4	d $y = \frac{3x+4}{x^2+1}$,	x = -1
6	Find an equation for the normal to each curve at the point on the curve with the given x-coordinate. Give your answers in the form $ax + by + c = 0$, where a, b and c are integers.			
	$\mathbf{a} y = \frac{1-x}{3x+1},$	x = 1	b $y = \frac{4x}{\sqrt{2-x}}$,	x = -2
	c $y = \frac{\ln(2x-5)}{3x-5}$,	<i>x</i> = 3	$\mathbf{d} y = \frac{x}{x^3 - 4} ,$	<i>x</i> = 2
7	<i>y</i>	$y = \frac{2\sqrt{x} - 3}{x - 2}$ A B	- x	

The diagram shows part of the curve $y = \frac{2\sqrt{x}-3}{x-2}$ which is stationary at the points *A* and *B*.

a Show that the *x*-coordinates of *A* and *B* satisfy the equation $x - 3\sqrt{x} + 2 = 0$.

b Hence, find the coordinates of *A* and *B*.