C3 Differentiation

1 Find an equation for the tangent to the curve with equation $y=x^{2}+\ln (4 x-1)$ at the point on the curve where $x=\frac{1}{2}$.

2 A curve has the equation $y=\sqrt{8-\mathrm{e}^{2 x}}$.
The point P on the curve has y-coordinate 2 .
a Find the x-coordinate of P.
b Show that the tangent to the curve at P has equation

$$
2 x+y=2+\ln 4
$$

3 A curve has the equation $y=2 x+1+\ln (4-2 x), x<2$.
a Find and simplify expressions for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
b Find the coordinates of the stationary point of the curve.
c Determine the nature of this stationary point.

4

The diagram shows the curve with equation $y=\frac{3}{2 x+1}$.
a Find an equation for the normal to the curve at the point $P(1,1)$.
The normal to the curve at P intersects the curve again at the point Q.
b Find the exact coordinates of Q.
5 A quantity N is increasing such that at time t seconds,

$$
N=a \mathrm{e}^{k t} .
$$

Given that at time $t=0, N=20$ and that at time $t=8, N=60$, find
a the values of the constants a and k,
b the value of N when $t=12$,
c the rate at which N is increasing when $t=12$.

$$
f(x) \equiv\left(5-2 x^{2}\right)^{3}
$$

a Find $\mathrm{f}^{\prime}(x)$.
b Find the coordinates of the stationary points of the curve $y=\mathrm{f}(x)$.
c Find the equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point with x-coordinate $\frac{3}{2}$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

7 A curve has the equation $y=4 x-\frac{1}{2} \mathrm{e}^{2 x}$.
a Find the coordinates of the stationary point of the curve, giving your answers in terms of natural logarithms.
b Determine the nature of the stationary point.

8

The diagram shows the curve $y=\mathrm{f}(x)$ where $\mathrm{f}(x)=3 \ln 5 x-2 x, x>0$.
a Find $\mathrm{f}^{\prime}(x)$.
b Find the x-coordinate of the point on the curve at which the gradient of the normal to the curve is $-\frac{1}{4}$.
c Find the coordinates of the maximum turning point of the curve.
d Write down the set of values of x for which $\mathrm{f}(x)$ is a decreasing function.
9 The curve C has the equation $y=\sqrt{x^{2}+3}$.
a Find an equation for the tangent to C at the point $A(-1,2)$.
b Find an equation for the normal to C at the point $B(1,2)$.
c Find the x-coordinate of the point where the tangent to C at A meets the normal to C at B.
10 A bucket of hot water is placed outside and allowed to cool. The surface temperature of the water, $T^{\circ} \mathrm{C}$, after t minutes is given by

$$
T=20+60 \mathrm{e}^{-k t},
$$

where k is a positive constant.
a State the initial surface temperature of the water.
b State, with a reason, the air temperature around the bucket.
Given that $T=30$ when $t=25$,
c find the value of k,
d find the rate at which the surface temperature of the water is decreasing when $t=40$.

$$
\mathrm{f}(x) \equiv x^{2}-7 x+4 \ln \left(\frac{x}{2}\right), x>0
$$

a Solve the equation $\mathrm{f}^{\prime}(x)=0$, giving your answers correct to 2 decimal places.
b Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the point on the curve where $x=2$.

12 A curve has the equation $y=x^{2}-\frac{8}{x-1}$.
a Show that the x-coordinate of any stationary point of the curve satisfies the equation

$$
x^{3}-2 x^{2}+x+4=0
$$

b Hence, show that the curve has exactly one stationary point and find its coordinates.
c Determine the nature of this stationary point.

