C3 DIFFERENTIATION

1 a Find an equation for the normal to the curve $y=\frac{2}{5} x+\frac{1}{10} \mathrm{e}^{x}$ at the point on the curve where $x=0$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
b Find the coordinates of the point where this normal crosses the x-axis.
2

The diagram shows the curve with equation $y=5 \mathrm{e}^{x}-3 \ln x$ and the tangent to the curve at the point P with x-coordinate 1 .
a Show that the tangent at P has equation $y=(5 \mathrm{e}-3) x+3$.
The tangent at P meets the y-axis at Q.
The line through P parallel to the y-axis meets the x-axis at R.
b Find the area of trapezium $O R P Q$, giving your answer in terms of e.
3 A curve has equation $y=3 x-\frac{1}{2} \mathrm{e}^{x}$.
a Find the coordinates of the stationary point on the curve, giving your answers in terms of natural logarithms.
b Determine the nature of the stationary point.
4

The diagram shows the curve $y=6 \ln x-4 x^{\frac{1}{2}}$. The x-coordinate of the point P on the curve is 4 . The tangent to the curve at P meets the x-axis at Q and the y-axis at R.
a Find an equation for the tangent to the curve at P.
b Hence, show that the area of triangle $O Q R$ is $(10-12 \ln 2)^{2}$.
5 The curve with equation $y=2 x-2-\ln x$ passes through the point $A(1,0)$. The tangent to the curve at A crosses the y-axis at B and the normal to the curve at A crosses the y-axis at C.
a Find an equation for the tangent to the curve at A.
b Show that the mid-point of $B C$ is the origin.
The curve has a minimum point at D.
c Show that the y-coordinate of D is $\ln 2-1$.

6 a Sketch the curve with equation $y=\mathrm{e}^{x}+k$, where k is a positive constant.
Show on your sketch the coordinates of any points of intersection with the coordinate axes and the equations of any asymptotes.
b Find an equation for the tangent to the curve at the point on the curve where $x=2$.
Given that the tangent passes through the x-axis at the point $(-1,0)$,
c show that $k=2 \mathrm{e}^{2}$.
7 A curve has equation $y=3 x^{2}-2 \ln x, x>0$.
The gradient of the curve at the point P on the curve is -1 .
a Find the x-coordinate of P.
b Find an equation for the tangent to the curve at the point on the curve where $x=1$.
8

The diagram shows the curve with equation $y=\mathrm{e}^{x}$ which passes through the point $P\left(p, \mathrm{e}^{p}\right)$. Given that the tangent to the curve at P passes through the origin and that the normal to the curve at P meets the x-axis at Q,
a show that $p=1$,
b show that the area of triangle $O P Q$, where O is the origin, is $\frac{1}{2} \mathrm{e}\left(1+\mathrm{e}^{2}\right)$.
9 The curve with equation $y=4-\mathrm{e}^{x}$ meets the y-axis at the point P and the x-axis at the point Q.
a Find an equation for the normal to the curve at P.
b Find an equation for the tangent to the curve at Q.
The normal to the curve at P meets the tangent to the curve at Q at the point R.
The x-coordinate of R is $a \ln 2+b$, where a and b are rational constants.
c Show that $a=\frac{8}{5}$.
d Find the value of b.
10

The diagram shows a sketch of the curve $y=\mathrm{f}(x)$ where

$$
\mathrm{f}: x \rightarrow 9 x^{4}-16 \ln x, x>0 .
$$

Given that the set of values of x for which $\mathrm{f}(x)$ is a decreasing function of x is $0<x \leq k$, find the exact value of k.

