1
a $\quad \mathrm{f}(1)=-3 \quad \mathrm{f}(2)=7$
sign change, $\mathrm{f}(x)$ continuous \therefore root
c $\mathrm{f}(-6)=-0.995 \mathrm{f}(-5)=0.0135$
sign change, $\mathrm{f}(x)$ continuous \therefore root
e $\mathrm{f}(0.4)=-0.351 \quad \mathrm{f}(0.5)=0.25$
sign change, $\mathrm{f}(x)$ continuous \therefore root

2
a $\mathrm{f}(0)=-4$
b $\mathrm{f}(1)=-12$
$\mathrm{f}(3)=17.8$
$f(5)=5.65$
$f(1)=-6$
$f(3)=-0.704$
$\mathrm{f}(2)=-0.243$
$\mathrm{f}(4)=2.55$
$\therefore N=2$
$\therefore N=3$
d $\mathrm{f}(0)=-1.63$
e $\mathrm{f}(0)=1$
$f(1)=3$
$\therefore N=0$

$$
\begin{aligned}
& \mathrm{f}(-5)=-2.87 \\
& \mathrm{f}(-4)=-2.25 \\
& \mathrm{f}(-3)=0.473 \\
& \therefore N=-4
\end{aligned}
$$

b $\mathrm{f}(0.5)=2.89 \quad \mathrm{f}(1)=-0.298$
sign change, $\mathrm{f}(x)$ continuous \therefore root
d $\mathrm{f}(2.1)=-1.60 \quad \mathrm{f}(2.2)=0.226$
sign change, $\mathrm{f}(x)$ continuous \therefore root
f $\mathrm{f}(10)=6.00 \mathrm{f}(11)=-9.00$
sign change, $\mathrm{f}(x)$ continuous $\therefore \operatorname{root}$
a let $\mathrm{f}(x)=x^{3}-12+\frac{x}{4}$
$\mathrm{f}(2)=-3.5 \quad \mathrm{f}(3)=15.75$
sign change, $\mathrm{f}(x)$ continuous \therefore root
c let $\mathrm{f}(x)=10 \ln 3 x-5+7 x^{2}$
$\mathrm{f}(0.47)=-0.0178 \quad \mathrm{f}(0.48)=0.259$
sign change, $\mathrm{f}(x)$ continuous \therefore root
e let $\mathrm{f}(x)=4^{x}-3 x-10$
$\mathrm{f}(-4)=2.00 \quad \mathrm{f}(-3)=-0.984$
sign change, $\mathrm{f}(x)$ continuous \therefore root
a $\mathrm{f}(1)=-1$
$\mathrm{f}(2)=12.5$
$f(1.1)=-0.809$
$f(1.2)=-0.426$
$\mathrm{f}(1.3)=0.164$
$\therefore a=12$
c $\mathrm{f}(-2)=-41$
$f(-1)=3$
$f(-1.1)=0.715$
$f(-1.2)=-1.96$
$\therefore a=-12$
e $f(5)=1.19$
$f(6)=-1.13$
$\mathrm{f}(5.5)=0.928$
$\mathrm{f}(5.8)=0.256$
$\mathrm{f}(5.9)=-0.246$
$\therefore a=58$
b $\operatorname{let} \mathrm{f}(x)=12 \mathrm{e}^{x}-9+4 x$
$\mathrm{f}(-1)=-8.59 \quad \mathrm{f}(0)=3$
sign change, $\mathrm{f}(x)$ continuous \therefore root
d let $\mathrm{f}(x)=\sin 4 x-7 \mathrm{e}^{x}$ $f(-6.5)=-0.773 \quad \mathrm{f}(-6)=0.888$
sign change, $\mathrm{f}(x)$ continuous \therefore root
f let $\mathrm{f}(x)=\tan \left(\frac{1}{2} x\right)-2 x+1$
$\mathrm{f}(2.6)=-0.598 \quad \mathrm{f}(2.7)=0.0552$
sign change, $\mathrm{f}(x)$ continuous \therefore root
b $\mathrm{f}(2)=-0.303$
$f(3)=0.292$
$f(2.5)=-0.00553$
$\mathrm{f}(2.6)=0.0537$
$\therefore a=25$
d $\mathrm{f}(11)=0.723$
$f(12)=-0.177$
$f(11.7)=0.0362$
$\mathrm{f}(11.8)=-0.0425$
$\therefore a=117$
f $\mathrm{f}(-3)=6.42$
$f(-2)=-15.0$
$f(-2.7)=2.60$
$\mathrm{f}(-2.6)=1.03$
$\mathrm{f}(-2.5)=-0.75$
$\therefore a=-26$

5 a

b $x^{3}+x-4=0 \Rightarrow x^{3}=4-x$
the graphs $y=x^{3}$ and $y=4-x$
intersect at exactly one point
\therefore one real root
c let $\mathrm{f}(x)=x^{3}+x-4$
$\mathrm{f}(1)=-2$
$\mathrm{f}(1.5)=0.875$
sign change, $\mathrm{f}(x)$ continuous \therefore root

6 a

b $x \ln x-1=0 \Rightarrow x \ln x=1 \Rightarrow \ln x=\frac{1}{x}$
the graphs $y=\ln x$ and $y=\frac{1}{x}$
intersect at exactly one point
\therefore one real root
c $\mathrm{f}(1)=-1$
$\mathrm{f}(2)=0.386$
$\therefore 1<\alpha<2$
$\therefore n=1$
$7 \quad \mathbf{a}$

b $\quad \mathrm{e}^{x}+x^{2}-5=0 \Rightarrow \mathrm{e}^{x}=5-x^{2}$
the graphs $y=\mathrm{e}^{x}$ and $y=5-x^{2}$
intersect at two points,
one for $x<0$ and one for $x>0$
\therefore one negative and one positive real root
c let $\mathrm{f}(x)=\mathrm{e}^{x}+x^{2}-5$
$\mathrm{f}(-3)=4.05$
$\mathrm{f}(-2)=-0.865$
sign change, $\mathrm{f}(x)$ continuous \therefore root
d $\mathrm{f}(1)=-1.28$
$\mathrm{f}(2)=6.39$
$f(1.2)=-0.240$
$\mathrm{f}(1.3)=0.359$
$\therefore 1.2<\alpha<1.3$
$\therefore n=12$

