Name:		

IGCSE

Differentiation

Instructions

- Use black ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

Samp	le I	Paper	2H	Question	25
Cump		ирсі		Question	

1 A particle moves along a straight line.

The fixed point O lies on this line.

The displacement of the particle from O at time *t* seconds, $t \ge 0$, is *s* metres, where

$$s = t^3 - 5t^2 - 8t + 3$$

Find the value of *t* for which the particle is instantaneously at rest.

t =	

(Total for Question 1 is 4 marks)

Sample Paper 1H Question 21

2 The curve with equation $y = 8x^2 + \frac{2}{x}$ has one stationary point.

Find the co-ordinates of this stationary point. Show your working clearly.

($\cdots \cdots$, $\cdots \cdots$)

(Total for Question 2 is 5 marks)

Tune	2018	Paner	2H	Question	17
June	2010	ι αρτι	411	Question	1/

- $y = x^3 2x^2 15x + 5$
 - (a) Find $\frac{dy}{dx}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots \tag{2}$$

C is the curve with equation $y = x^3 - 2x^2 - 15x + 5$

(b) Work out the range of values of x for which C has a negative gradient.

(4)

(Total for Question 3 is 6 marks)

January 2019 Paper 1H Question 12

4 The curve *C* has equation $y = \frac{1}{3}x^3 - 9x + 1$ (a) Find $\frac{dy}{dx}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} =$$
 (2)

(b) Find the range of values of x for which C has a negative gradient.

(3)

(Total for Question 4 is 5 marks)

May 2019 Paper 1H Question 24

5	A particle P is moving along a straight line that passes through the fixed point O . The displacement, s metres, of P from O at time t seconds is given by
	$s = t^3 - 6t^2 + 5t - 4$
	Find the value of t for which the acceleration of P is 3 m/s ²
	$t = \dots$
	(Total for Question 5 is 4 marks)