Name:

GCSE (1 - 9)

Trig and Exponential Graphs

Instructions

- Use **black** ink or ball-point pen.
- Answer all questions.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Diagrams are **NOT** accurately drawn, unless otherwise indicated.
- You must show all your working out.

Information

- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end

Sketch the graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$

(Total for Question 1 is 2 marks)

2 Sketch the graph of $y = \tan x^{\circ}$ for $0 \le x \le 360$

(Total for Question 2 is 2 marks)

3 Sketch the graph of $y = \cos x^{\circ}$ for $0 \le x \le 360$

(Total for Question 3 is 2 marks)

On the grid, sketch the curve with equation $y = 2^x$ Give the coordinates of any points of intersection with the axes.

(Total for Question 4 is 2 marks)

5 Here are four graphs

In the table below, match each equation with the letter of its graph.

Equation	Letter of Graph
$y = \sin x$	A
$y=2^x$	C
$y = x^3$	B
$y = \cos x$	P

(Total for Question 5 is 2 marks)

6 Here is a sketch of the curve $y = \sin x^{\circ}$ for $0 \le x \le 360$

Given that $\sin 30^{\circ} = \frac{1}{2}$ write down the value of:

- i) sin 150°
- ii) sin 330°

$$-\frac{1}{2}$$
 (1)

(Total for Question 6 is 2 marks)

Here is a sketch of the curve $y = \cos x^{\circ}$ for $0 \le x \le 360$

$$\frac{60}{10} = 6$$
each small box = 6

Use the graph to find estimates of the solutions, in the interval $0 \le x \le 360$, of the equation:

i)
$$\cos(x) = -0.4$$

ii)
$$4\cos(x) = 3$$

$$\cos(x) = \frac{3}{4}$$

$$36^{\circ}$$
 and 324°

(Total for Question 7 is 4 marks)

This sketch shows part of the graph with equation $y = pq^x$ where p and q are constants.

The points with coordinates (0, 8), (1, 18) and (1.5, k) lie on the graph.

Calculate the values of p, q and k.

$$y = pq^{x}$$
 (0,8)
 $8 = pq^{0}$
 $8 = pq^{0}$
 $9 = 8q^{x}$ (1,18)
 $18 = 8q$
 $q = 18$
 $q = 9$

$$y = 8 \left(\frac{9}{4}\right)^{x} (1.5, k)$$

$$k = 8 \left(\frac{9}{4}\right)^{1.5}$$

$$= 8 \left(\frac{9}{4}\right)^{\frac{3}{2}}$$

$$= 8 \left(\frac{3}{2}\right)^{3}$$

$$= 8 \left(\frac{27}{8}\right)$$

$$= 27$$

$$p=8$$
 $q=\frac{9}{4}$ $k=27$

(Total for Question 8 is 6 marks)

- The depth of water, d metres, at the entrance to a harbour is given by the formula: $d = 5 4\sin(30t)$, where t is the time in hours after midnight on one day.
 - (a) On the axes below, draw the graph of d against t for $0 \le t \le 12$

(b) Find the two values of t, where $0 \le t \le 24$, when the depth is least.

 $\frac{3}{2}$ and $\frac{15}{2}$

(Total for Question 9 is 6 marks)

(4)